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Abstract

Governments around the world have taken drastic measures to contain the spread of

the new Coronavirus. Policy responses to the pandemic could a�ect local food prices in

sensitive ways. We hypothesize that mobility restrictions reduce trade, which increases

food price dispersion and prices in regionally integrated markets, but not in segmented

markets. We use WFP price data of 798 retail markets in 47 low to middle income

countries to test if and how food prices were a�ected by the stringency of COVID-

19 measures. We assess market segmentation based on pre-COVID-19 price data and

measure government responses using the Oxford Coronavirus Government Response

Tracker. Our results show that more stringent policy responses increase food prices for

integrated and less remote markets but not for segmented markets. The impact of the

stringency of policy reposes on food prices is mediated by reductions in mobility and

moderated by markets' pre-Corona dependency on trade.
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1 Introduction

The COVID-19 pandemic has changed the world within a few months. The number of

con�rmed COVID-19 deaths has surpassed two million and an end is not in sight at the

time of writing.1 Governments around the world have taken drastic measures to contain

the spread of the virus: About 190 countries have implemented external border restrictions

limiting entry or exit across di�erent sovereign jurisdictions, more than 171 countries have

closed their schools in order to reduce the transmission of the virus, and restrictions on

non-essential businesses are commonplace (Fang et al., 2020). The fear of an uncontrollable

outbreak has also led many governments of low to middle income countries (LMICs) to

take drastic lock-down measures even in regions where the occurrence of infections was low.

Such policy responses could have a range of sizable side e�ects. For instance, uncushioned

income losses heavily a�ect households' purchasing power, mobility restrictions disrupt the

supply of agricultural labor and limit the ability of market actors to sustain trade (Barrett,

2020; Bene, 2020; Laborde et al., 2020). Predictions on the welfare impacts for vulnerable

populations are grim: World Bank growth estimates suggest that COVID-19 could push 71

million people into extreme poverty in 2020 (Global Economic Perspectives, 2020), Guan

et al. (2020) predict substantial economic losses as a function of the length, severity and

recurrence of lock-down measures, and global �gures point out a disproportionate impact on

groups that are already vulnerable, such as youth entering the job markets (IMF, 2020).

The pandemic has hit the world at a time in which world hunger was on the rise after

decades of steady decline.2 In many regions, peaking food prices were increasing food in-

security. For vulnerable households that spend most of their budget on food, even small

changes in food prices can have severe welfare impacts (Abbott, 2012), which raises concerns

that supply chain disruptions and price increments related to the pandemic could further

exacerbate this trend. Empirical evidence on the impacts of lock-down measures on food

1See https://ourworldindata.org/covid-deaths (access January 19 2021)
2See https://unstats.un.org/sdgs/report/2020/ (access October 22 2020)
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prices on local markets in lower income countries is scarce. Yet, a local perspective is impor-

tant as aggregated prices may hide di�erences related to market characteristics, which could

conceal true price e�ects vulnerable households in some regions are facing. For instance, in

exporting markets trade frictions related to COVID-19 reduce local prices as local supply

goes up, while in importing markets prices increase because of supply chain disruptions. By

looking at price aggregates, we may average out local dynamics and underestimate the risk

of price increases in some regions for vulnerable households. We aim to �ll this gap by using

price data of 798 retail markets in 47 LMICs to test if and how local food prices were a�ected

by COVID-19 policy responses. In particular, we examine whether the same national policy

measures had di�erential impacts on prices depending on the integration of local markets in a

wider regional network of markets. We conjecture that more stringent government responses

to COVID-19 increase food price dispersion and price levels in regionally integrated markets

but not in segmented markets. We regard reductions in local mobility as the underlying

mechanism that raises trade costs and dims price signals. To test this, we use monthly price

information collected by the World Food Program (WFP) and classify market integration

based on pre-COVID-19 data for every market-commodity pair. To measure government

responses to COVID-19, we use the Oxford Coronavirus Government Response Tracker and

Google's COVID-19 Community Mobility Reports data. Our results show that a one stan-

dard deviation (s.d.) increase in the stringency of national COVID-19 measures is associated

with a one percentage point (p.p.) increase in monthly changes in food prices in integrated

markets, but the e�ect disappears in segmented markets. This �nding is robust to a range

of robustness tests and the analysis of the mechanisms suggests that the e�ect is mediated

by reductions in mobility, and the e�ects are particularly pronounced in less remote areas

with low local agricultural activity.

In many regions, governments exempted agricultural trade from mobility restrictions.

However, in rural areas agriculture is often the dominating livelihood activity which makes

it complicated to design e�ective exemptions in a way that they do not apply to everyone.
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In addition, the closure of informal local markets may increase travel times of households to

markets which further impairs access to food (Carlitz and Makhura, 2020). This could

suggest that regions that are less dependent on trade may be less a�ected by mobility

restrictions. While this mainly concerns physical access to food, income e�ects are likely to

spill over to economic access to food, reaching rural and urban households through di�erent

channels. The economic slow-down and unemployment generated can create excess in supply

of labor in rural areas, while the demand of workforce for traditional harvest practices can

be limited by distancing measures (Schmidhuber et al., 2020). The change of international

remittances, estimated to reduce by 23.1%, can further curtail the resources available to

households.3 These e�ects reduce purchasing power and feed back into the supply-side,

lowering the marketability of agricultural products.

On a global level, there are no signs of signi�cant supply chain disruptions and prices

seem to have remained stable internationally (Bene, 2020; Barrett, 2020; Devereux et al.,

2020). Yet in Europe, Akter (2020) �nds a signi�cant impact of stay-at-home restrictions

on national food prices of around 1% over several food categories considered. More granular

information on food price developments particularly in LMICs is scarce. Mahajan and Tomar

(2020) scrape prices of an online retailer in three cities in India to analyze the availability

and prices of selected food items. The authors �nd a reduction in the availability in foods in

the range of 10%, which is mainly driven by the distance to production sites, and lockdown

related price changes between -0.8% (edible oils) and 2.4% (cereals). These changes refer

to a speci�c context that may not apply to food insecure households in rural areas, for

instance. In this paper, we apply a broad geographical perspective and focus on the main

food items in the diet of vulnerable households in each region. On the household level, phone

surveys conducted shortly after mobility restrictions were put in place shed �rst light on the

consequences of the pandemic on food insecurity in lower income countries. Preliminary

results from six African countries seem to suggest that rising food prices impaired access

3See https://www.worldbank.org/en/news/press-release/2020/04/22/world-bank-predicts-sharpest-
decline-of-remittances-in-recent-history (access 1 Oct. 2020)
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to food. For instance, in Ethiopia for about 90% of households that could not buy enough

food, higher prices or less regular income, were the biggest problems (Wieser et al., 2020);

in Mali 45% respondents who had no access to basic foods mentioned food price increases

as main reason (World Bank, 2020). However, the local context could matter and remote

markets with short value chains may be less a�ected by mobility constraints than more

integrated markets. For example, based on phone interviews in two states in India, Ceballos

et al. (2020) �nd that respondents in the region where small-scale farming is more prevalent

experienced no signi�cant changes in access to diverse foods after mobility constraints were

put in place, whereas in the region with more large farms access to diverse food decreased

signi�cantly.

To date, there is little empirical evidence on the side e�ects of COVID-19 policy responses

on prices, but a long-standing literature has analyzed the e�ect of trade restrictions on

international prices and price volatility. To shield domestic prices against global spikes,

governments of net-exporting countries can for instance impose export bans or levy export

taxes while net-import countries can remove import restrictions. Widespread insulating

measures increase prices and price volatility with adverse welfare consequences particularly

for food importing countries, as for instance observed during the 2007/8 food price shock

(Mitra and Josling, 2009; Anderson, 2012; Abbott, 2012; Götz et al., 2013). Despite clear

theoretical predictions, however, informal trade and poor enforcement of trade restrictions

may undermine the impacts on cross-border price gaps on local markets (Porteous, 2017).

In addition, longer supply chains can absorb global food price spikes before they reach

consumers (Abbott, 2012). In a study on local maize prices in Tanzania, Ba�es et al.

(2019) �nd that domestic in�uences explain about two thirds of the variation of local prices

while regional and global factors play a subordinate role. We contribute to this literature

by showing how local market conditions mediate the e�ect of national policies on prices. In

addition, we identify reductions in local mobility as mechanisms through which policies a�ect

food prices. Previous studies have highlighted the role of infrastructure for food insecurity
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and the formation of prices (Burgess and Donaldson, 2010; Donaldson, 2018; Shively and

Thapa, 2017). In these studies the latent mechanism is mobility and in this paper we have

the rare opportunity to examine how sudden changes in mobility a�ect local prices in the

short run. Our results con�rm the important role of local mobility for the formation of

prices.

The remainder of the article is organized as follows: in the next section we discuss the

conceptual framework, followed by a discussion of the data in section 3. In section 4 we

outline the empirical strategy, followed by a discussion of the results in section 5 and in

section 6 we present concluding remarks.

2 Conceptual Framework

According to Hayek's price theory, economic agents possess particular knowledge that is

vital for the functioning of local economies (Hayek, 1945). In market economies the system

of prices established by supply and demand ties together this knowledge and decentralizes

decisions on how to allocate available resources. Prices shape the allocation of resources,

con�ned by infrastructural and regulatory constraints and the outreach of price signals.

That is, an increase in prices in a local market only leads to increased imports from other

markets, if there is knowledge about price di�erentials large enough for arbitrage operations

between the markets. In the absence of trade frictions and with complete knowledge, local

prices would be perfectly pegged onto international prices. In practice, however, knowledge of

regional prices is incomplete (Aker, 2010) and local prices are often found to be a misaligned

or independent of international prices (Ba�es et al., 2019). We conjecture that COVID-19

policies impact prices through restricted mobility, which increases trade costs and dims price

signals.

We focus on short-run price changes due to an exogenous mobility shock without con-

sidering general equilibrium e�ects. To illustrate how mobility restrictions may a�ect local
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prices, we develop a simple reduced form framework adapted from Ba�es et al. (2019). The

price P i in market i is a function of the external price PE and costs of trade. We assume

that trading costs f are a function of restrictions α imposed to limit the spread of the Coro-

navirus and the remoteness Ri of a market. We assume that trading costs increase with the

stringency of government responses (∆f
∆α

> 0), but do not further specify how it interacts

with remoteness.4 Trade with other markets occurs if the autarchy price PAi is higher than

the external price and trading costs (imports) or lower than the external price and trading

costs (exports). Otherwise the market price is determined by local demand and supply,

which we assume to be una�ected by mobility restrictions in the short run. This leads to

three scenarios for the e�ect of restrictions on the local price P i:

P i =


PE + f(α,Ri) if PAi = PE + f(α,Ri) (1)

PAi if PAi ⊂ (PE − f(α,Ri) , PE + f(α,Ri) )

PE − f(α,Ri) if PAi 5 PE − f(α,Ri) (3)

(2)

The �rst scenario describes a net importing market in which restrictions increase trading

costs and thus the price P i. The second scenario applies to markets that can meet the

demand for commodity i cheaper locally than by importing it from other markets given the

trading costs and the autarchy price PAi. The last scenario refers to exporting markets, in

which trade restrictions lead to less exports and excess supply which causes local prices to

decrease. Following the framework, an increase in α increases the range at which the autarchy

price PAi is established, thinning trade between connected markets. This categorization is

dynamic and may change over the course of a year (depending on local storage capacities),

and the commodity considered. For instance, in the lean season and without storage, local

demand can only be met by imports from surplus markets which means the price is de�ned

4Some di�erent e�ects mechanisms are plausible: movement restrictions might increase trading costs with
remoteness of markets or could have a decreasing e�ect in remote areas if restrictions are less likely to be
enforced and monitored. We regard this as an empirical question that we analyze in the Results section.
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by PE + f(α,Ri). As trading barriers increase, arbitrage margins decrease, leading to larger

price di�erentials between markets. This leads to the �rst hypothesis that more stringent

COVID-19 policies increase price dispersion.The framework suggests that markets that used

to rely on external trade, are more sensitive to mobility restrictions than segmented markets

that rely on local supply and demand. Yet, the e�ect direction is ambiguous. In surplus

markets, mobility restriction reduce exports and increase excess supply, which reduces local

prices. On the other hand, in net-de�cit markets mobility restrictions reduce imports, which

leads to excess demand and increasing local prices. In a closed framework in which exports

and imports are balanced, positive and negative price e�ects would cancel each other out.

However, most LMIC countries are net-food importers and assuming that this also holds on

average for local markets, we expect that mobility restrictions increase prices. This leads to

our second hypothesis that stringent COVID-19 policies increase prices in integrated markets

but less so in segmented markets.

3 Data

In the main analysis we focus on data covering the months January until October 2020. To

construct our market integration indicator, we additionally rely on monthly pre-Corona data

covering the period from 2017 to 2019. In the following, we describe the data sources in more

detail.

3.1 Market prices

The market price data set, �rst published in 2009 following the food price crisis of 2007/2008,

is a collection of monthly time series coming from 480 primary and secondary sources and

accessible publicly from the UN World Food Programme website.5 It covers mostly markets

in the 83 developing countries where WFP operates, also incorporating data available from

5See https://dataviz.vam.wfp.org/economic_explorer/prices
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UN Food and Agriculture Organization. The information is used by UN organizations,

local governments and partners to provide early warnings on economic access to food and

complement consumption data in food security analysis (Caccavale et al., 2017). Prices

are presented as monthly averages, independently of the original frequency of collection,

and are reported at local level. Each market is either an aggregation of di�erent physical

locations within multiple settlements or the main retail market in one settlement. In every

location, enumerators collect information on the price of a standard retailing or wholesale

unit. We converted these units of measurement to either kilograms or liters. From the

original data set we applied di�erent criteria to further �lter the data, removing national

averages, observations that were sparse in time, and data points falling more than 4 standard

deviations away from the median.

In order to balance the trade-o� between availability of data (and therefore inclusion of

markets and countries) and the length of the time series (which allows deal with more degrees

of freedom, once modeling), the time series were cut o� from January 2017 to the latest

available information, up to October 2020. Information from January 2017 to December

2019 is used to estimate the market integration for each market-commodity pair. For the

main analysis we focus on 2020, the year in which the pandemic took place, giving us several

months before and after the outbreak. The resulting data set is summarized in Table 1

below to provide more insights on the countries considered. It is worth noting that a certain

variability in the number of available markets and commodities applies, with extreme cases

such as Malawi (118 markets and 4 commodities) or the Syrian Arab Republic (30 markets

and 36 commodities) and Bangladesh (7 markets and 6 commodities). We refer to Table 9

in the Annex for a list all commodities included in our data base.
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Table 1: Overview of markets, market integration, and mobility indicators by country
Country # markets commodities

(# min)

commodities

(# max)

Segmentation

(0/1)

OxCGRT Google

Afghanistan 8 3 3 0.77 0.36 0.07

Bangladesh 7 1 4 0.53 0.56 0.19

Burkina Faso 60 3 6 0.23 0.39 0.04

Burundi 52 4 13 0.32 0.10

Cambodia 3 2 3 0.17 0.34 0.17

Central African Republic 11 1 5 0.46 0.40

Chad 22 1 6 0.49 0.49

Congo 4 11 12 0.34 0.49

Cote d'Ivoire 3 3 9 0.85 0.40

Djibouti 5 7 9 0.81 0.46

Eswatini 4 10 10 0.58 0.56

Gambia 8 25 33 0.09 0.53

Guinea 4 9 9 0.83 0.50

Haiti 9 7 11 0.33 0.49 0.16

India 55 6 21 0.48 0.59 0.24

Iraq 16 18 19 0.80 0.67 0.11

Jordan 12 24 29 0.29 0.52 0.17

Kazakhstan 3 4 4 0.17 0.63 0.07

Kenya 9 1 2 0.78 0.58 0.08

Kyrgyzstan 18 28 33 0.36 0.53 0.08

Lebanon 24 2 19 0.23 0.50

Lesotho 10 6 6 0.34 0.26

Malawi 13 1 4 0.68 0.39 0.06

Mali 64 3 7 0.77 0.38

Mauritania 6 1 6 0.40 0.58 -0.07

Mongolia 5 5 5 0.68 0.40 0.00

Mozambique 15 1 13 0.89 0.25 0.06

Myanmar 11 2 4 0.77 0.44 0.12

Namibia 8 4 9 0.48 0.23 0.06

Niger 56 2 4 0.62 0.54 0.05

Nigeria 8 18 20 0.28 0.53 0.10

Pakistan 5 13 13 0.66 0.56 0.27

Philippines 6 2 3 0.33 0.58 0.20

Rwanda 14 4 17 0.72 0.39 0.11

Senegal 43 1 6 0.14 0.36

Sierra Leone 13 8 11 0.87 0.26

Somalia 9 2 4 0.37 0.53

South Sudan 7 2 7 0.19 0.55

State of Palestine 11 25 27 0.51 0.36 0.11

Sudan 12 2 3 0.81 0.43 0.17

Syrian Arab Republic 29 16 19 0.03 0.51 0.13

Tajikistan 5 21 25 0.43 0.60 0.12

Togo 6 3 4 0.29 0.30 -0.01

Turkey 3 35 36 0.47 0.36 0.00

Uganda 6 5 7 0.03 0.46 0.14

Yemen 23 5 15 0.01 0.05 -0.00

Zambia 64 2 6 0.03 0.28 0.03

Note: Google=Google mobility indicator (description in section 5). We re-scaled the original OxCGRT indicator to 0-1 and

transfomed the Google mobility indicator so that positive value refer to mobility reductions and divided the original values by 100.
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Due to sampling and complexity of collecting such a wide number of time series, missing

values are an ever-present issue. To construct market integration indicators with as many

time series as possible, we impute missing values in the in the period from 2017 to 2019 using

Amelia-II, an R package for imputing missing values (Honaker et al., 2011). Diagnostics on

the imputation process have been analyzed with support of di�erent methods. First, we map

the missing values against markets and commodities; second, we observe the distributions

of imputed and observed values; third we use the model to �over-impute� observed values.

These methods, their results, and correlates of missing values are discussed in Annex A. In

our sample from 2017 to 2019 about 8.8% of observations are imputed. It is important to

note that we do not impute missing values in 2020, the data we use in the main analysis.

To analyze prices in multiple countries we divide the price in local currency by the

average o�cial indirect quotation against the U.S. dollar extracted from WFP-Dataviz. This

constructs time-series that account for the strategic use of currency reserves in the dynamics

of international markets. We rely on this simple method as we don't yet aim to achieve full

comparability of price levels or to test purchasing power parity of goods between countries

(Marsh et al., 2012).

Figure 1 illustrates the development of prices compared to the previous year in our data.

As comparison to international food price developments, we also chart FAO Food Price

Index (FFPI) data that measures monthly changes in international prices of a basket of food

commodities.6 On average, the market price increases reported in 2020 were higher than

those in any other period since 2018. While market price developments are mostly similar

to FFPI changes, we note a divergence starting early 2020. While market prices in our

sample increased, the FFPI was declining. This could re�ect di�erences between local and

international prices, but could also be due to di�erences in the dynamics of commodities

considered. In Annex B we illustrate price developments separately for maize, wheat, rice,

and beans in the data, which shows that developments were not uniform.

6See http://www.fao.org/3/ca9509en/ca9509en.pdf#page=78 (access November 2020)
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Figure 1: Monthly price development compared to previous year

Figure 2 illustrates the absolute percentage di�erence of prices to the same commodity

in the same country and month to obtain an approximation of price dispersion. While price

dispersion drops to its lowest levels since 2018 in March, April and May 2020, it rises to high

levels again later in the year. However, it bears noting that the extreme points do not di�er

more than 1.5 percentage points from previous values in the time series.

Figure 2: Price di�erences compared to national prices
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3.2 Market integration

Measuring the impact of mobility restrictions on the process of price formation requires

controlling for the embededness of each market in the broader national network before 2020.

It has been extensively recognized that spatial convergence has a key role in the formation

of prices and this is represented by market integration, or the degree of transmission of

price changes between two markets (Enke, 1951). We expect less integrated markets in the

regional network to be less impacted by the stringency of COVID-19 responses. Therefore,

we classify whether a market is integrated in regional trade using OLS regression methods

and market pre-Corona prices between 2017 and 2019.

Market linkages are commonly modeled with transaction costs and demand and supply

in distinct markets that jointly determine prices and trade �ows (Barrett, 1996). In the

absence of trade information, we follow the approach �rst outlined by Ravallion (1986) to

estimate market integration based on price data. Market integration is achieved when there

is a degree of transmission of price changes between two markets. Therefore, we use time

series of each market-commodity pair before the outbreak of Corona to estimate the e�ect

of prices in a reference market on prices P in month t of that market-commodity pair :

Pt = α0 + α1P(t−1) + β0Rt + β1R(t−1) + γ(t,12)S(t,12) + εt (1)

Compared to Ravallion's original framework, we rely on a de�nition of reference market,

in which reference market prices are de�ned as R, that is more adaptable to the use of

large samples. In his seminal work on the 1974 famine that swept Bangladesh, Ravallion

de�nes the market network as having a star-like topology. In other words, each market

relates to a central, reference market. This is possible due to the market structures at the

time, the di�erent way information and commodities �owed and the availability of anecdotal

information, complementing the absence of reliable data on within country trade �ows. Given

the higher dimensionality we are dealing with, we aggregate prices of the same commodity
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in multiple neighboring markets to create a reference price series. In the main analysis,

we chose up to 10 closest markets in terms of travel distance within 24 hours of driving

time, accounting for the presence and conditions of roads and natural barriers (see Annex

E for a discussion of variations of this de�nition). In the estimations we test whether the

reference price in the same month Rt and of previous months Rt−1 is signi�cantly associated

with market prices conditional on seasonality S. Based on that, we classify markets as

segmented if we fail to reject the null hypothesis that β0 = β1 = 0 at the 5% signi�cance

level. We choose to rely on market segmentation as our measure for integration in the main

analysis, to clearly identify markets in which prices are independent of reference market

prices (pre-Corona). Other indicators derived from the same estimation framework such as

long- and short-run integration, further weight in the rate of convergence towards a spatial

equilibrium, which is less relevant in our context.7 The choice of market segmentation is

also reinforced by the conceptual framework adopted: our focus is the presence of trade

relationships between markets, which are exempli�ed by the relevance of reference markets

in the price determination mechanism. Speed of convergence or strenght of inter-temporal

relations, which are better described by other measures, by contrary, are not relevant. We

argue that a market has a trade relation with other markets, and therefore is integrated, if

the reference market has a signi�cant impact on prices of the local market, regardless of the

speed, length and magnitude of that impact.

Other methods to test for market integration have been extensively explored in the past

decade, for better accounting information asymmetries, trade costs, inter-temporal variations

due to commodity stocks and substitution e�ects. This comes at the price of higher model

complexity and with the requirement of more data, computational capacity and complex

model selection algorithms, given the high dimensionality we're dealing with (9,118 di�erent

regression models).

7As expected, estimation results using long-run integration as indicator for market integration lead to
similar results. The selection of indicators, their relationship and the implications for the results are discussed
in more detail in Annex E.
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We test for market segmentation for each market-commodity pair in the data (using pre-

Corona data only). Results are mixed due to the variety given by the di�erent commodities.

In total about 44% of market-commodity pairs are classi�ed as segmented. Figure 3 maps all

markets in the data base, whether a market is segmented, and the prevalence of segmented

markets in a country indicated by the shade of blue. Dividing the results in quartiles of

prevalence of segmentation, we �nd the lowest shares in Rwanda, Burundi, Cambodia, South

Sudan, Central African Republic and Zambia. Highest prevalence includes, most notably,

Kazakhstan, Afghanistan, Kygyzstan, Pakistan, and Philippines.

Figure 3: Segmentation test rejection shares by commodity and market

3.3 COVID-19 policy response data

To measure government responses to COVID-19, we use Oxford Coronavirus Government

Response Tracker (OxCGRT) data. OxCGRT systematically collects cross-national, cross-

temporal information on several di�erent common policy responses that governments have

taken to respond to the pandemic (Hale et al., 2020). Data is collected and updated in real
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time and the project tracks governments' policies and interventions across a standardized

series of indicators comprising containment responses, economic policies, health system poli-

cies and miscellaneous policies from which a set of composite indices is created.8 We use

simple means to bring daily national data to our monthly analysis level. In the main analysis

we rely on the stringency index that combines eight measures on containment and closure

policies and a measure on public information campaigns. As robustness check we also use

single indicators including measures on internal movement restrictions, restrictions of public

transport and stay-at-home restrictions (we refer to Figure 13 in the Annex for an overview

of these sub-indicators).

The stringency of responses to COVID-19 varies markedly in the sample. Table 1 shows

mean government response and mobility indicators by country during the period from Febru-

ary until October 2020. The OxCGRT is highest in Palestine, India and Iraq with an average

score above 0.5 and lowest in Yemen and Burundi with scores around 0.1. We present more

information on the timely evolution of the stringency indicator and its consequences for local

mobility using Google's mobility data in the Result section.

3.4 Other data sources

In addition to price and policy response data, we use a range of georeferenced information

to control for the local environment in which markets are located (we refer to Table 10 in

the Annex for a list with data sources). To compute the distance between markets in a

country, we use the Open Source Routing Machine to estimate the duration of a car ride

between every market pair in a country. In the main analysis we approximate remoteness as

distance to the capital city and as distance to the next closest market as share of the average

market distances in a country. We also created bu�er zones of approximately 25km around

each market to add worldpop population estimates (Tatem, 2017), density of tertiary roads

(Meijer et al., 2018), night time lights (National Oceanic and Atmospheric Administration),

8For more information see github page: https://github.com/OxCGRT/covid-policy-
tracker/blob/master/documentation/codebook.md
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standardized precipitation index (McKee et al., 1993) calculated from the Climate Hazards

Group InfraRed Precipitation with Station data (Funk et al., 2014), ICDR Land Cover data

to compute the share of cultivated land, and information on the occurrence of armed clashes

from the Armed Con�ict Location and Event Dataset (Raleigh et al., 2010). To account

for the national and regional intensity of the pandemic, we added the number of con�rmed

Corona cases according to WHO numbers.9

In Table 2 we present summary statistics of these variables during the period from Jan-

uary to October 2020. The mean distance to the next closest market is 1,39 hours by car,

240km to the closest capital city and 260km to the next port. Con�rmed Corona cases reach

on average 73107 in this period, about 40% of land in a radius of 25km around markets is

rain fed or irrigated agricultural land, and about 7% of markets were located in a con�ict

zone (our sample includes Syria and Yemen). Precipitation was normal in most cases and

only around 1% of markets experienced extreme rainfall deviations from the mean of below

-2 or above 2 s.d. in one of the months in the research period.

9See https://covid19.who.int/ (access December 2020)
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Table 2: Summary statistics of other data sources
N Mean

(Jan-Oct 2020)

Driving time to next market (hours) 774 1.42

(1.84)

Distance to capital (km) 774 257.58

(215.62)

Distance to closest port (km) 774 267.63

(254.64)

Con�rmed Corona cases (country/month) 774 73106.66

(250556.50)

People per 1km grid square (25km radius) 774 397.39

(954.36)

Standardized Precipitation Index (25km radius) 771 0.40

(0.63)

Tertiary road density (25km radius) 774 227.58

(257.52)

Mean night time light (25km radius) 774 4.53

(9.27)

Armed clashes (25 km radius) 774 1.74

(18.28)

Share of cultivated land (25km radius) 774 0.40

(0.30)

International food price index (FFPI) 774 96.09

(0.54)

Number of reference markets 774 9.03

(2.11)

Note: standard errors in parentheses. See Table 10 for more information on data sources.

4 Empirical Strategy

Our study investigates whether food prices have been a�ected by the stringency of policy

responses to the COVID-19 pandemic and whether the same national measures a�ected

integrated markets di�erently compared to segmented markets. For the estimation we rely

on data from January until October 2020. That is, the data include months before and after

the outbreak of the pandemic, where the timing of the outbreak may di�er by country. Our

baseline speci�cation is the following:
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∆Yxit = β0+β1Segmentedxi+β2Stringencyit+β2Segmentedxi∗Stringencyit+β3Xxit+δx+θit+εxit

(2)

Where ∆Yxit represents the relative change in the price of commodity x, in market i

between the month t and t−1. Our main independent variables are the stringency indicator

and the interaction term of market-commodity segmentation interacted with the (national)

stringency index. Xxit is a vector that includes a set of time variant control variables com-

prising the FAO food price index, SPI index, and the occurrence of con�icts. To the best

of our knowledge, there are no other relevant time-varying market-level characteristics with

a monthly frequency that can and should be included in the model above. However, price

changes are known to be driven by several other economic and institutional variables (Ba�es

et al., 2019; Aker, 2010; Shively and Thapa, 2017). This includes for instance the local in-

frastructure, distance to other markets, or population density. To account for these factors,

we include the distance to next sampled market, local road density, population densities,

night time lights, distance to the capital and next port, and the density of sampled reference

markets. All time invariant variables are interacted with a linear time trend following the

strategy proposed in Manacorda and Tesei (2020). We gradually add these control variables

to the estimations to show the robustness of our main independent variables of interest.

To capture unobserved heterogeneity at the national and the local level, we further include

month varying country θit and commodity-market δx �xed e�ects. Standard errors are clus-

tered at commodity-market level in the main analysis.

5 Results

We �rst present the main empirical results, followed by multiple robustness checks to validate

the �ndings and lastly, we explore e�ect mechanisms.
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Main Results

This section presents results from our main speci�cation. Column 1 in Table 3 depicts that

the coe�cient of the stringency of policy responses to COVID-19 is positive and statistically

signi�cant at the 5% level. This means that more stringent policies tend to generate an

increase in prices. The coe�cient increases only slightly when we add controls to the baseline

estimation (Table 3 - Columns 2 and 3). The coe�cient of our preferred speci�cation (Table

3 - Column 3) suggests that a one s.d. increase in the stringency index leads to an increase of

the price level of approximately one p.p. (0.31*0.03) per month in non-segmented markets.

However, Table 3 also shows that market conditions matter. In particular, it seems that

this e�ect almost disappears in segmented markets. The interaction term is negative and

statistically signi�cant at the 0.1% level. The coe�cient estimate of -0.02 in Column 3 in

Table 3 shows that the e�ect of a one s.d. increase in the stringency index in a segmented

market is 0.62 percentage points lower than in non-segmented markets. The overall e�ect of

the stringency of policy responses to COVID-19 is mainly determined by market conditions:

more restrictive measures increase prices in integrated markets while they are less important

in in�uencing price changes in segmented markets.

20



Table 3: E�ect of COVID-19 response stringency on prices

(1) (2) (3)
price change price change price change

Stringency Index 0.02∗∗ 0.03∗ 0.03∗

(0.01) (0.01) (0.01)

Stringency Index * Segmented -0.02∗∗∗ -0.02∗∗∗ -0.02∗∗∗

(0.01) (0.01) (0.01)
N 51031 50889 50782
N Cluster 6937 6937 6924
Fixed E�ects yes yes yes
Controls no yes yes
Additional Controls no no yes

Note: SE in parentheses. * p<0.05, ** p<0.01. *** p<0.001
Controls include distance to next market, FPPI, (log)ntl, (log)road density, (log)population,
number of missings in market-commodity pair. Additional controls further include SPI,
armed clashes, number of reference markets, (log)distance to capital and closest port.

Following the conceptual framework, we also expect price dispersion to increase in re-

sponse to an increase in the stringency of COVID-19 measures. In Table 4 we replace the

dependent variable and instead of price changes use the relative di�erence of prices compared

to the reference market price. The coe�cients suggest no e�ect of the stringency indicator

on food price dispersion in non-segmented markets. However, the interaction term indicates

a negative and signi�cant e�ect in segmented markets. That is, a one s.d. increase in the

stringency indicator, reduces the price di�erence in segmented markets compared to the ref-

erence market price by 0.2 percentage points. Compared to the average di�erence to the

reference market price of about 11%, this e�ect is small. This result seems to indicate that

while prices in segmented market remain una�ected by the stringency of measures, reference

market prices increase, thus leading to a slight reduction in price gaps.
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Table 4: E�ect of COVID-19 response stringency on price dispersion

(1) (2) (3)
price dispersion price dispersion price dispersion

Stringency Index 0.24 0.29 0.23
(0.46) (0.71) (0.72)

Stringency Index * Segmented -1.00∗∗ -0.88∗ -0.84∗

(0.38) (0.38) (0.38)
N 50133 50002 49895
N Cluster 6876 6876 6863
Fixed E�ects yes yes yes
Controls no yes yes
Additional Controls no no yes

Note: SE in parentheses. * p<0.05, ** p<0.01. *** p<0.001
Controls include distance to next market, FPPI, (log)ntl, (log)road density, (log)population,
number of missings in market-commodity pair. Additional controls further include SPI,
armed clashes, number of reference markets, (log)distance to capital and closest port.

Robustness Tests

In this section we deploy a number of tests to assess the validity of the main results. We

test the robustness of our result to potential problems related to reverse causality, omitted

variable bias, changes in the functional form speci�cation, and sensitivity to alternative

estimators. Our main interest lies on price changes, and as price dispersion is a mechanical

consequence of di�erential price changes, we do not explicitly discuss the e�ects on price

dispersion in the following.

i) Reverse causality As source of exogenous variation to explain changes in the level of

prices for commodity x after the outbreak of COVID-19, we rely on the interaction between

market integration for commodity x before the outbreak of COVID-19 and the stringency

indicator in country i implemented after the outbreak of the pandemic. A key assumption

with di�erences-in-di�erences estimates are parallel pre-trends. In Figure 15 in the Annex,

we show that the trends in prices before the outbreak of COVID-19 are parallel in segmented
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and non-segmented markets. Furthermore, it is reasonable to assume that price changes for a

selected commodity after the outbreak of COVID-19 are not a�ecting market integration for

the same commodity before the outbreak of COVID-19. To further corroborate the validity of

this assumption, we regress the market integration index for commodity x in country i before

the outbreak of COVID-19 on the changes in prices of commodity x in country i between

the month t and t − 1 after the outbreak of COVID-19. The analysis shows that changes

in prices are not correlated to market segmentation suggesting that market segmentation

mediates the e�ects of the stringency indicator on prices (see Table 12 in the Annex).

However, our results would still su�er from simultaneous causality if food prices a�ect the

stringency of COVID-19 measures. Therefore, we additionally apply an instrumental variable

approach to prove the validity of our main analysis. For each country, the instrument uses

the average number of new Corona cases in the sub-region (without cases of the considered

country) as a source of exogenous variation that a�ects the design of national policies. A

similar approach was used by Lee and Gordon (2005) who instrument tax rates in one country

using average tax rates in other countries weighted by the inverse of the distance between

these countries. Martorano (2018) instruments tax/GDP ratio on the average value of the

tax/GDP ratio in countries within the same sub-region. Similarly, Collier and Hoe�er (2004)

regress national level of military spending on the level of military spending in neighboring

countries, while Ebeke and Ngouana (2015) instrument the level of spending on subsidies

in a given country considering the level of subsidies in neighboring countries. In all these

papers, the choice of the instrument is mainly justi�ed by the e�ects of spill-over in policy

design across countries within the same sub-region. In our case, it would be justi�ed by the

fact that changes in the health crisis conditions will lead to changes in the policy responses

at regional level. Governments are expected to be more likely to introduce restrictive policies

if neighboring countries experienced an increase in the number of new Corona cases. At the

same time, we assume that regional Corona cases only a�ect staple food prices in markets

through the stringency of national policies. To reduce the risk that policies of neighbouring
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countries directly a�ect prices we additionally use the average number of new COVID-19

cases in the region instead of the sub-region. In both cases we use the number of con�rmed

cases and the interaction with market segmentation to instrument prices and prices interacted

with market segmentation.

Table 13 in the Annex reports the two stage least squares (2SLS) estimates using re-

gional (columns 1-3) and sub-regional (colums 4-6) Corona cases as instrument. Both sets

of instruments are relevant as indicated by the very large �rst stage F-test results and as the

equations are exactly identi�ed, we cannot employ overideni�cation tests. The estimated

coe�cients are similar to the main results, yet the statistical signi�cance and coe�cient size

increase in all models. The 2SLS estimations results are similar to the main estimates of

Table 3, and we fail to �nd indication for reverse causality bias in our estimates.

ii) Omitted variable bias A concern with the discussion above is that the analysis might

be biased due to omitted variables. We control for possible confounders and add �xed e�ects

at the commodity-market and country level to reduce the risk of omitted variables bias.

Furthermore, we test di�erent functional form speci�cations to see if we omitted non-linear

terms of the stringency indicator in the main estimates. To allow for more �exibility, we

use a categorical variable showing quintiles of the stringency indicator instead of imposing

a linear relationship on the data. The results suggest that the marginal e�ect of an increase

in the stringency indicator diminishes slightly at high levels of the score above about 0.7.

Yet the positive and statistically signi�cant e�ect on prices remains and we fail to reject the

hypothesis that the marginal e�ects are the same at all quintile levels at the 5% level (see

Figure 16 in the Annex). Our �ndings hold if we add quadratic or cubic transformations of

the stringency indicator to the model.

iii) Standard errors Lastly, we test whether alternative clustering speci�cations change

the conclusions we draw from the results. In particular, we correct standard errors for

spatial correlations to allow errors between markets to be correlated. Therefore, we adopt

24



the method applied in Fetzer (2014) and Hsiang (2010) and assume that spatial dependence

is linearly decreasing in the distance from markets up to a cut-o� distance of 500 km. The

results using di�erent cut-o� values are presented in Table 14 in the Annex and are in line

with the main estimation results.10 In addition, if we cluster standard errors at the market or

di�erent regional levels, the coe�cient of the interaction remains signi�cant at the 5% level

in all speci�cations, yet the statistical signi�cance stringency indicator coe�cients drops to

the 10% level in most speci�cation.

Mechanisms and heterogeneous e�ects

Our main analysis establishes a signi�cant relationship between the stringency of COVID-19

policies and changes in prices. However, this e�ect is conditional on the market structure:

more restrictive measures increase prices in integrated markets while they are less important

in in�uencing prices in segmented markets. In this section, we extend the main analysis by

�rst analyzing the potential pathways through which policy responses may in�uence price

levels and thereafter explore heterogeneous e�ects of the stringency of policy responses to

COVID-19 on prices. We identi�ed, in particular, changes in local mobility as main mediator

through which the stringency of measures a�ects prices and, following the conceptual frame-

work, we examine di�erential e�ects depending on the level of local agricultural activity, a

market's remoteness, and by commodity group.

i) Stringency and mobility

COVID-19 policy responses are only expected to impact food prices if they are enforced. In

regions where the state is weak, the OxCGRT stringency indicator may not re�ect restrictions

on the ground. Therefore, we also consider Google's COVID-19 Community Mobility Reports

as measure for changes in mobility. The reports chart movement changes compared to a

reference period across di�erent categories of places including retail and recreation, groceries

10Note that because we are using a di�erent estimator, the coe�cients of the stringency indicator change
in the spatial autoregressive models.
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and pharmacies, parks, transit stations, workplaces, and residential (Aktay et al., 2020).11

Data is available at the national, admin-1 and admin-2 level and we match mobility data to

markets on the lowest geographic entity for which Google provides data. In 54% of markets

we have admin-1 data, in 10% admin-2 level data, and in 36% national information.

Figure 4 shows the development of the government response index and google mobility

data since January 2020. The graph indicates a steep increase in stringency of government's

responses from February until April in our sample and a slow and steady decrease thereafter.

This trend in policies is clearly mimicked by the mobility data that show the largest reduction

in April and a steady recovery thereafter.12 The recovery in mobility after April seems,

however, to happen a bit faster than the decline in the response indicator. The correlation

between both measures is high, reaching 0.65 in our sample. An overview of policy responses

of sampled countries by geographic regions is presented in Figure 14 in the Annex.

To understand where and under which circumstances the stringency of COVID-19 re-

sponses is associated with changes in mobility, we regress the Google indicator on the strin-

gency indicator interacted with a range of market characteristics using OLS models (Table

11 in the Annex). Besides large di�erences by geographic region, the stringency of measures

is more strongly associated with mobility reductions the higher the number of con�rmed

Corona cases, a smaller e�ect the further away the region from the capital, and it increases

in con�ict regions. The e�ects are more pronounced if we only focus on regions where

sub-national Community Mobility Reports were available.

11Data available at https://www.google.com/covid19/mobility/
12Mobility changes in sub-categories such as markets and pharmacies are very similar to overall mobility

changes including all categories.
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Figure 4: Government COVID-19 responses and mobility changes

To explore the role of changes in mobility for the development of prices, we re-estimate our

baseline estimations, replacing the stringency of responses to COVID-19 with the mobility

index. Again, the sign and statistical signi�cance of the coe�cient remains similar to the

baseline results. Table 5 shows a signi�cant relationship between mobility restrictions and

changes in the price level. On average, a one s.d. reduction in mobility increases the price

by just short of one p.p. (0.15*0.04) in non-segmented markets, which is very close to the

e�ect size we observed using the stringency indicator. The e�ect is signi�cant at the 0.1%

level. As before, the e�ect disappears in segmented markets. The results indicate that the

e�ect of the stringency of policy measures on food prices is mediated by changes in mobility,

which however, is moderated by the pre-Corona trade dependency of markets.

It should be noted that the Google indicator is not available for all countries in our data

set (see Table 1), but the results are not driven by di�erence in the composition of the

sample. To test this we ran the main estimates of Table 3 only for markets with Google

mobility data and obtained similar results. In addition, the results hold if we restrict the

estimation sample to markets with sub-national mobility data.

27



Table 5: E�ect of mobility reductions on prices

(1) (2) (3)
price change price change price change

Mobility Reduction 0.04∗∗ 0.06∗∗∗ 0.05∗∗∗

(0.01) (0.01) (0.01)

Mobility Reduction * Segmented -0.05∗∗∗ -0.04∗∗∗ -0.04∗∗∗

(0.01) (0.01) (0.01)
N 39801 39736 39629
N Cluster 5255 5255 5242
Fixed E�ects yes yes yes
Controls no yes yes
Additional Controls no no yes

Note: SE in parentheses. * p<0.05, ** p<0.01. *** p<0.001
controls include distance to next market, FPI, (log)ntl, (log)road density, (log)population,
number of missings in market_commodity pair. Addiotional controls further include SPI,
number of battles, number of reference markets, (log)distance to capital and closest port.

As the relationship between the stringency indicator and mobility reductions di�ers sig-

ni�cantly by geographic region, we plot the estimated e�ect of a unit change in mobility on

prices for the four sub-regions that cover more than 90% of the observations in our data.13

Figure 5 suggests that prices in segmented markets (right panel) are less sensitive to mobil-

ity changes compared to non-segmented markets (left panel) except for markets in Southern

Asia. Prices in non-segmented (sampled) markets in Western Asia and Eastern Africa are

positively a�ected by changes in mobility, while the e�ect is negative in Western Africa and

there is no e�ect in sampled markets in Southern Asia. These di�erences could be related

to dependencies on imports and commodity speci�ties, which we further examine in the

next section. However, it is important to bear in mind that the sampled markets are not

necessarily representative for these regions.

13In the estimations we add the sub-region indicator to the interaction term segmented*stringency and
report the e�ect of a unit change in the mobility indicator on food prices for each sub-region.
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Figure 5: E�ect of unit reduction in mobility on price changes by sample region (95% CI)

ii) Heterogeneous e�ects

Our �nal research objective is to explore other factors that may moderate the relationship

between restrictive policy measures and food prices. Therefore, we examine di�erential

e�ects in areas with high/low agricultural activity, market remoteness, and by commodity.

In the conceptual framework we postulate that the e�ect direction of restrictive COVID-

19 measures on prices depends on whether local markets are net-importers or exporters.

We expect increasing prices in importing markets because of decreasing supply and decreas-

ing prices in exporting markets because of excess supply. We don't have trade data for

local markets, but we matched information on the amount of agricultural land surrounding

markets, which we regard as a prerequisite for the local cultivation of foods. We use the

median prevalence of irrigated or rain-fed agricultural land in a radius of 25km of each mar-

ket as cuto� to distinguish between markets with low and high agricultural activity and run
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our preferred speci�cation for each sub-set separately (see column 1 and 2 of Table 6). In

more agricultural-oriented areas, the implementation of more restrictive measures decreases

prices and particularly so in segmented markets. By contrast, stringent policies signi�cantly

increase the level of prices in less agricultural-oriented areas. Similarly, using regional night-

time-lights to classify more urban, industrial areas suggests that price increases were more

pronounced in these markets (see Table 15 in the Annex).14 As additional robustness check,

we match FAO data on the national share of imports in cereals to split the sample into

high and low national dependency on imports. The result are similar indicating that the

e�ects of the stringency indicator on prices is driven by markets in more import dependent

countries (see Table 15 in the Annex). While our indicators are far from perfect, the results

support our hypothesis that policy responses have di�erent e�ects on prices depending on

the structure of markets and in this case, the local availability of agricultural produce.

In the conceptual framework we refer to the role of remoteness for the impact of COVID-

19 measures on food prices, yet without specifying impact directions. Previous results suggest

that more stringent measures a�ect reductions in mobility di�erently in areas further away

from the capital which could suggest that prices are less impacted by COVID-19 policies in

remote areas. However, distance to other markets could increase transportation costs and

lead to supply disruptions for instance if inter-regional tra�c is banned. We approximate

remoteness as distance to the capital city and the results for the sub-set of markets closer

(further) to the capital than the median market is shown in column 3 (and 4) of Table 6.

The results suggests that the positive increase in prices is driven by less remote markets.

This could imply that, as mobility is less a�ected in remote areas, prices are less sensitive

to the stringency of measures. Using the distance to the closest market as share of the

mean distances of markets in a country as robustness check leads to very similar result (see

Table 15 in the Annex). However, the distance to the capital may also pick up other market

characteristics (e.g. agricultural orientation) which is why the result needs to be interpreted

14We use the median and 75th percentile of night-time-lights in the 25km bu�er zone around each market
as cutto�s to classify urban regions.
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with caution.

Lastly, we examine if e�ects di�er by commodity. Therefore, we group all varieties of

rice, wheat, beans, and maize and run the estimations for each group separately. The time

series chart of prices in our sample indicated di�erent dynamics in 2020 (see Figure 11 in the

Annex), which is also re�ected in the estimates (see columns 5-8 of Table 6). The e�ect of

the stringency indicator is positive in all models, but much larger for maize than for wheat.

The second largest e�ect is on beans, yet, the coe�cients fails the 5% signi�cance level. As

the number of observation drops quite signi�cantly, it is not surprising that standard errors

increase. If we group all these staples and distinguish them from other foods, the results

suggest that the stringency indicator a�ects staples more strongly and that the di�erential

e�ect for segmented markets is more pronounced for non-staples (see Table 15 in the Annex).

However, these results need to be interpreted with caution as this de�nition of staples is quite

arbitrary and in principle, all sampled commodities are selected because of their importance

in the diet of vulnerable households in the respective regions.

The results of the heterogeneous e�ects analysis help to better understand where and

under which circumstances the stringency of policy responses to the pandemic led to price

increases. Impacts seem to be more pronounced in less remote, urban areas and less impor-

tant for prices in segmented and agricultural areas. While these results are in line with the

conceptual framework, the results are only suggestive and we cannot fully rule out that the

interacted proxy indicators pick up other important local aspects which could confound the

analysis.

6 Concluding remarks

We analyze how COVID-19 policies a�ect food prices in 47 LMICs, focusing particularly on

how the integration of markets in a larger network mediates this e�ect. The results point

at increases in food prices with more stringent policy measures, but the e�ects are driven
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by integrated markets that are more dependent on trade with other markets. The e�ect

size in integrated markets is considerable: a one s.d. increase in the stringency of policies,

increases monthly price changes by one p.p.. This e�ect seems to be mediated by changes

in local mobility, and the e�ects are particularly pronounced in less remote regions with

low local agricultural activity. The results hold against several robustness tests, but these

alternative speci�cations should be taken with caution because all empirical strategies we

employed have certain weaknesses. However, the consistency of the results across di�erent

estimators reassures us about the validity of our �ndings.

The results imply that the impact of COVID-19 policy responses on food security are far

from uniform. Vulnerable households in less remote and trade dependent regions are more

severely a�ected by price increments than households in the vicinity of segmented markets.

This is the opposite of the e�ect of other types of shocks on prices such as natural disasters

(Hill and Porter, 2016) or positive income shocks in the form of cash transfers (Cunha et al.,

2018; Filmer et al., 2018) but similar to the e�ects of trade shocks (Porteous, 2017; Anderson

et al., 2013). Our results imply that, in the face of far-reaching mobility reductions, short-

term relief programs should account for the unequal e�ects on food prices that may also

bene�t producers. Indiscriminately scaling up existing safety nets, which often target rural

populations, might fail to address the needs emerging from stringent policy responses to

the pandemic for households in less agricultural and integrated market catchment areas.

However, we analyze the short-run impacts of COVID-19 policies, which could substantially

di�er from the mid- and long-run impacts of the pandemic on food security.
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Annex

A

The imputation model assumes that the distribution of missing value is random, where

complete data D is distributed as a multivariate normal D ∼ ℵ(,Σ). Distribution of missing

dataM , given complete data D is equal to the distribution of missing dataM given observed

data: p(MD) = p(MDobs). The expectation maximization algorithm, based on bootstrapped

data, is illustrated in 6.

Figure 6: Data imputation algorithm treeview - Amelia R package

Source: Amelia R package vignette (Honaker et al., 2011).

The ratio for each country is based on the base model below.

P(t,c,m)α(0,c,m) + α(1,c,m)P (t+1,c̄,m) + β(1,c)X(t−1) + β(2,c)X(t+1) + β(3,c)X
2
(t−1) + β(4,c)X

2
(t+1) +

ε(t,c,m)

Prices for each commodity and market over time P(t,c,m) are imputed using lagged and

forward values of exchange rates to US Dollar Xt and their square, with a di�erent con-

stant for each market and future price of other commodities in the same market P (t+1,c̄,m).

Moreover, we constrained the model to impute only results in the interval between 0.5 times
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the minimum and 1.5 times the maximum value for each of the commodities observed in a

country. Albeit lacking some obvious checks (such as the absence of additional lagged values)

and the presence of multi-collinearity, the model chosen allows estimation of missing values

in six datasets with reasonable time (~ 36 hours) and without accounting for each speci�city

or exogenous variables. The coverage of such variables for more than 2000 locations globally

would easily complicate the imputations, while, as mentioned by Honaker et al. (2011), the

parsimony or use of future values are in line with the predictive objective. The advantage of

this model is its capability to infer a missing price of a commodity in a market, thanks to

the information set available of prices of other commodities in the same market or the price

of di�erent commodities in other markets, even if those time series are, in turn, incomplete.

We excluded from our analysis time series that had convergence issues, speci�cally 16 series

from 7 countries and two markets (Nairobi (Kenya) and Conakry (Guinea)). Later, we fur-

ther cleaned the database removing markets in a country with more than 2/3 of the series

missing (for all commodities) and all commodities with more than 2/3 of the series missing

(for all markets in a country).

After this, we also removed series which had null variance in the period of interest. Finally,

if a market has more than 5 commodities, we randomly sub-sampled 5 commodities to be

included as part of the lead prices in the model. As additional parameters of the imputation

method, we limit iterations of the expectation maximization algorithm between 5 and 10,000

executions and create 5 imputed sets for each data point. The entire process is repeated in

order to increase the sample-size and ensure our results are not strongly dependent on the

random sub-sampling applied. The 10 sets of imputed values resulting from this process are

later aggregated with arithmetic average for each data point (commodity, market and date)

to give the �nal imputed value.

Di�erent diagnostics part of the R - Amelia II package are launched during this process.

Before running imputations, a missingness map is generated for each country, visually high-

lighting where missing values are concentrated the most in market/commodity combinations
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(see Figure 7).

Figure 7: Missingness map, price data, Guinea-Bissau

In this example we see how missing values are spread among commodities (on the hori-

zontal axis) including exchange rates (FX and its squared values) and the remaining three

markets (on the vertical axis, combined with time). In this graph, Sorghum and Maize have

evidently more missing values than other commodities, and Kirintim market has a number of

missing values for all commodities, meaning it was excluded from data collection for multiple

months (which further analysis reveals to be three consecutive months in 2019).

As part of the imputation process, we try to visually assess the accuracy of our estimates

through kernel densities of imputed and observed values (see Figure 8).
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Figure 8: Density comparison of imputed and observed values by commodity, Guinea-Bissau

Finally, because of the nature of the missing data mechanism, it's not possible to judge

if the prediction of the imputation model is close to the unobserved value we're trying

to reconstruct. To overcome this limitation, through multiple imputations, we're able to

construct 90% con�dence intervals around the average estimation of observed values, that

are sequentially treated as missing. The colour of the points is classi�ed in the graphs based

on the share of missing values in each overimputed series. This technique, overimputation,

allows to graph both observed and imputed value of each price data point for all markets in

which we have observed price data of a commodity (see Figure 9).
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Figure 9: Overimputation of observed values by commodity, Guinea-Bissau

In these graphs we're able to intercept those unique time series that resulted in overim-

puted values whose con�dence interval doesn't include the observed price value. As a last

check for the quality of our imputations, we observe time series graphs with imputed and

observed values. Here, as an example, we look at Maize prices, which have more missing val-

ues than other commodities in Guinea-Bissau, the country selected for the above examples

(see Figure 10).
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Figure 10: Maize price in LCU, Bandim market

Noting the imputation process is only used to inform the estimation of the Market Inte-

gration measures, we attempt to produce, as a robustness check for data imputation, linear

interpolation for all missing values (Becker et al., 1988). Relying on a linear trend con-

structed on the time variable, we obtain new estimates for 2,668 unique series out of 6,024

missing values. We then proceed to re-estimate the main three market integration measures

on these series. Using the same model speci�cation described in our main analysis, we ob-

tain new regression coe�cients; still maintaining the same algorithms as described in Annex

E, we perform F-tests for segmentation, long-term integration and short-term integration

on the newly estimated coe�cients. The rejection of the test is di�erent from the result

obtained using the Amelia-II method for 345 (3.7%), 309 (3.4%) and 267 (2.9%) series (out

of a total of 9,118 series used in the analysis). The average prevalence of segmented, long-

term integrated and short-term integrated series is mostly unchanged for all three indicators

(respectively -0.8, -1.1 and +0.6 percentage points).
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Table 7: Market integration indicators by imputation method
Market Integration Indicator Data Imputation method N Rejection rate (only series with missing values) # Series with di�erent result from Amelia-II method

Segmentation Amelia-II 6.024 40,8%

Interpolation 2.668 40,0% 345

Long-term integration Amelia-II 6.024 21,8%

Interpolation 2.668 20,7% 309

Short-term integration Amelia-II 6.024 79,2%

Interpolation 2.668 79,7% 267

Table 8: Correlates of imputed observations

(1) (2) (3) (4)
imputed (OLS) imputed (OLS) imputed (logit) imputed (logit)

main
Distance to closests market -0.00 -0.00 -0.01 -0.01

(-1.05) (-1.06) (-1.32) (-1.36)
Distance capital -0.00 -0.00 -0.00 -0.00

(-0.73) (-0.75) (-0.56) (-0.58)
Distance port -0.00 -0.00 -0.00 -0.00

(-1.46) (-1.48) (-1.15) (-1.16)
Agricultural activity 0.04 0.04 0.43 0.42

(1.37) (1.34) (1.08) (1.07)
Armed co�icts -0.00∗∗ -0.00∗∗ -0.00 -0.00

(-2.89) (-2.86) (-1.91) (-1.90)
NTL -0.00 -0.00 -0.03 -0.03

(-0.77) (-0.75) (-0.89) (-0.86)
StD NTL -0.01 -0.01∗ -0.09 -0.09

(-2.00) (-2.02) (-1.68) (-1.71)
Road density 0.00 0.00 0.00 0.00

(0.11) (0.13) (0.06) (0.07)
StD Road density 0.00 0.00 0.00 0.00

(0.68) (0.66) (0.11) (0.10)
Population density 0.00 0.00 0.00 0.00

(1.25) (1.21) (1.47) (1.44)
StD Population density -0.00 -0.00 -0.00 -0.00∗

(-1.82) (-1.79) (-1.94) (-1.96)
SPI 0.01 0.01 0.06 0.06

(0.52) (0.53) (0.34) (0.37)
Other NAs in timeseries -0.00 -0.00

(-0.41) (-0.39)
Month, Year FE yes yes yes yes
N 51126 51126 50816 50816

t statistics in parentheses
Note:
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 11: Monthly price development compared to previous year

Figure 12: Monthly price dispersion compared to previous year
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Table 9: Sampled commodities
commodity markets commodity markets commodity markets
Millet 282 Cabbage 26 Groundnuts 8
Rice (imported) 264 Fish (frozen) 25 Rice (medium grain imported) 8
Tomatoes 216 Bread (bakery) 25 Oranges 8
Sugar 213 Meat (beef canned) 24 Maize meal (white with bran) 8
Maize (white) 212 Fish (dry) 24 Rice (long grain imported) 7
Rice (local) 207 Beans (red) 24 Bread (vetkoek) 7
Wheat �our 204 Cassava 23 Rice (mixed low quality) 7
Sorghum 193 Milk (non-pasteurized) 23 Cassava (fresh) 7
Onions 180 Fish 23 Fish (fresh) 7
Potatoes 157 Maize meal 22 Cassava leaves 7
Maize 153 Lentils (red) 22 Pulses 7
Rice 150 Rice (imported Egyptian) 22 Rice (milled superior) 6
Lentils 146 Beans (kidney red) 22 Rice (regularmilled) 6
Eggs 125 Pasta (spaghetti) 21 Bread (brotchen) 6
Beans (niebe) 123 Tomatoes (paste) 20 Sorghum (white imported) 6
Meat (beef) 123 Peas (yellow split) 20 Meat (pork) 6
Salt 115 Bulgur (brown) 20 Tea (green) 5
Oil (vegetable) 113 Maize (imported) 20 Sorghum (food aid) 5
Salt (iodised) 110 Apples 19 Beans(mash) 5
Oil (palm) 110 Rice (low quality) 19 Rice (tchako) 5
Beans (white) 105 Wheat �our (local) 19 Ghee (arti�cial) 5
Groundnuts (shelled) 97 Peas 18 Maize meal (imported) 5
Groundnuts (unshelled) 96 Butter 18 Poultry 5
Oil (sun�ower) 93 Walnuts 18 Peas (green dry) 5
Wheat 91 Buckwheat grits 18 Oil (cooking) 5
Beans (dry) 90 Bread (�rst grade �our) 18 Oil (cotton) 5
Beans 86 Lentils (green) 18 Beans (haricot) 5
Bananas 85 Semolina 18 Beans (sugar) 4
Milk (pasteurized) 79 Ke�r 18 Beans (niebe white) 4
Chickpeas 79 Rice (medium grain) 18 Wheat �our (high quality) 4
Tea (black) 77 Fish (bonga) 18 Bread (traditional) 4
Cassava �our 76 Rice (small grainimported) 17 Oil (mixed imported) 4
Sweet potatoes 71 Livestock (sheep med male) 16 Sugar (brown) 4
Meat (chicken) 68 Cheese (local) 15 Oranges (big size) 4
Potatoes (Irish) 68 Apples (dried) 15 Chickpeas (local) 4
Lentils (masur) 64 Oil (vegetable local) 15 Eggplants 3
Maize meal (white breakfast) 63 Bread (khoboz) 15 Milk (powder infant formula) 3
Lentils (moong) 60 Cheese (low-fat) 15 Meat (veal) 3
Sorghum (white) 59 Oil (vegetable imported) 15 Meat (pork with fat) 3
Maize �our 58 Cucumbers (greenhouse) 14 Fish (smoked) 3
Fish (tuna canned) 58 Groundnuts (small shelled) 14 Beans (magnum) 3
Bread 56 Bread (brown) 14 Zucchini 3
Lentils (urad) 55 Beans (butter) 14 Co�ee 3
Milk (powder) 55 Cowpeas 14 Cocoa (powder) 3
Sugar (jaggery/gur) 54 Maize meal (white �rst grade) 14 Tea (herbal) 3
Ghee (vanaspati) 54 Beans (catarino) 13 Bread (common) 3
Oil (mustard) 53 Cheese (fat) 13 Sorghum (taghalit) 2
Meat (goat) 52 Chili (red dry raw) 13 Cornstarch 2
Livestock (sheep 2yrs male) 51 Spinach 12 Rice (denikassia imported) 2
Rice (low quality local) 48 Meat (chicken whole) 12 Sesame 2
Rice (high quality local) 47 Cheese (white boiled) 12 Yam (�orido) 2
Oil (soybean) 45 Beans (fava dry) 12 Fish (appolo) 2
Maize meal (white roller) 45 Livestock (goat medium male) 12 Watermelons 8
Pasta 44 Tomatoes (greenhouse) 11 Co�ee (instant) 8
Dates 44 Onions (dry local) 11 Rice (paddy long grain 8
Bulgur 43 Pigeon peas 11 Yam 8
Oil (groundnut) 42 Potatoes (medium size) 11 Groundnuts (large shelled) 8
Yogurt 42 Rice (coarse) 11 Sorghum (red) 29
Oil 41 Maize meal (white wto bran) 11 Parsley 29
Garlic 40 Meat (goat with bones) 11 Fish (lates dry local) 27
Milk 39 Oil (maize) 11 Oil (olive) 26
Tea 38 Bananas (medium size) 11 Wheat �our (�rst grade) 26
Meat (mutton) 38 Labaneh 11 Meat (beef minced) 29
Cheese (picon) 34 Cauli�ower 11 Meat (lamb) 29
Maize (local) 33 Beans (sugar-red) 10 Bread (shop) 29
Cheese 32 Cassava (cossette) 10 Rice (basmati broken) 9
Cucumbers 32 Cheese (goat) 10 Wheat �our (imported) 9
Carrots 31 Cassava meal (gari) 10 Beans (black) 9
Apples (red) 31 Peas (split dry) 10
Bread (pita) 30 Maize meal (local) 9
Sugar (white) 29 Meat (chicken frozen) 9
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Table 10: Data sources and variable de�nitions
variable description source

Stringency Average of 9 indicators of government measures in

response to COVID.

github.com/OxCGRT/covid-

policy-tracker /

blob/master/

documentation /

index_methodology.md

Mobility Indicator showing reductions in mobility to a

benchamrk period. Transfored so that positive

values re�ect reductions in mobility.

https://www.google.com/

covid19/mobility/

Cases con�rmed Total COVID case load in the world region. Log

transformed in 2SLS model.

https://covid19.who.int/table

SPI Standardized precipitation index, the number of

standard deviations that observed precipitation

cumulated over 3 months deviates from the

climatological average in a 25 km radius. Monthly

averages matched to market data.

Funk et al., 2014

Armed clashes Number of battles per month, de�ned as violent

interactions between two politically organized

armed groups, in a 25 km radius. Monthly averages

matched to market data.

https://acleddata.com/

FPPI FAO food price index. http://www.fao.org

/worldfoodsituation/

foodpricesindex/en

Mean night time light Index of electric night time lights, based on 2013

data, in a 25 km radius. Annual average matched

to market data and log-transformed in main

estimations.

https://sos.noaa.gov/

datasets/nighttime-

lights/

Road density Density of tertiary roads in a 25 km radius.

Average matched to market data and

log-transformed in main estimations.

https://www.globio.info/

download-grip-dataset

Population density Average population density in a 25 km radius.

Log-transformed in main estimations.

https://www.worldpop.org/

Driving time to next market Distance of the closest market (in driving hours) as

percent of the average of the distances between all

of the country's markets

http://project-

osrm.org/docs/v5.22.0/

api/#route-service

Share of cultivated land Average of rain-fed and irrigated farm land in 25km

radius (constant).

https://cds.climate.copernicus.eu

/cdsapp#!/

dataset/satellite-land-

cover?tab=form
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Figure 13: OxCGRT mobility restrictions
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Figure 14: Government responses and mobility changes in the sample by region
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Table 11: Correlates of Mobility Reductions

All Interacted Subnational
(1) (2) (3)

Mobility Mobility Mobility
StringencyIndex 46.47∗∗∗ 68.33∗∗∗ 44.21∗∗∗

(0.52) (3.05) (4.75)

SPI 0.01 0.10 0.16
(0.05) (0.07) (0.09)

Armed Clashes 0.00∗∗∗ 0.00 0.02∗∗∗

(0.00) (0.00) (0.00)

Corona Cases 0.00∗∗∗ -0.00∗∗∗ -0.00∗∗∗

(0.00) (0.00) (0.00)

StringencyIndex × segmented 0.63∗ 0.56
(0.27) (0.30)

StringencyIndex × SPI -0.13 -0.19
(0.12) (0.14)

StringencyIndex × Armed Clashes 0.00∗∗∗ 0.26∗∗∗

(0.00) (0.05)

StringencyIndex × (log)NightTimeLights 11.35 -0.06
(10.99) (16.53)

StringencyIndex × (log)RoadDensity 0.15 -0.63∗∗

(0.18) (0.24)

StringencyIndex × (log)PopulationDensity 0.03 0.09
(0.24) (0.26)

StringencyIndex × (log)Distance to Capital -1.15∗∗∗ -1.53∗∗∗

(0.11) (0.13)

StringencyIndex × Share agricultural Land -0.85 -1.16
(0.53) (0.61)

StringencyIndex × Corona Cases 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00)

CA× StringencyIndex -36.07∗∗∗

(2.53)

LAC× StringencyIndex -34.76∗∗∗ -9.98∗

(2.67) (4.56)

MENA× StringencyIndex -18.74∗∗∗ 13.29∗∗

(2.24) (4.59)

SA× StringencyIndex -6.15∗∗ 24.56∗∗∗

(2.31) (4.36)

SSA × StringencyIndex -19.54∗∗∗ 13.10∗∗

(2.29) (4.36)
N 48651 48651 41029
Fixed E�ects yes yes yes

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 15: Average prices by segmentation

note: average price by segmentation presented with shaded LOESS smothing, optimal SSE
alpha=0.3.

Table 12: E�ect of COVID-19 response and price variation on segmentation

(1)

segmented

Stringency Index -0.00

(-0.13)

price change 0.03

(1.30)

Controls, FE yes

N 40925.00

t statistics in parentheses

Note:
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 16: Non-linear e�ects of stringency indicator on price changes

Note: Binary indiators for each stringency quintile included as single and interacted coe�cients with whole

set of control variables. Quintile refer to stringency indicator values of 0.02, 0.2, 0.5, 0.68, 0.84.

Table 13: E�ect of COVID-19 response stringency on prices (2SLS)
(1) (2) (3) (4) (5) (6)

price changeprice changeprice changeprice changeprice changeprice change

Stringency Index 0.05*** 0.18*** 0.18*** 0.03** 0.09*** 0.08***

(0.01) (0.03) (0.03) (0.01) (0.02) (0.02)

Stringency Index*Segmented -0.03*** -0.03*** -0.04*** -0.03** -0.03*** -0.03***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

N 51031 50889 50782 51031 50889 50782

N Cluster 6937 6937 6924 6937 6937 6924

F Stringencyindex 2697 1406 1092 5943 3811 3563

F Stringencyindex*Segmented 13503 13788 13434 16837 16909 16331

IV (COVID-cases) reg-cntry reg-cntry reg-cntry subreg-cntrysubreg-cntrysubreg-cntry

Fixed E�ects yes yes yes yes yes yes

Controls no yes yes no yes yes

Additional Controls no no yes no no yes

Note: SE in parentheses. * p<0.05, ** p<0.01. *** p<0.001

Controls include distance to next market, FPPI, (log)ntl, (log)road density, (log)population,

number of missings in market-commodity pair. Additional controls further include SPI, armed

clashes, number of reference markets, (log)distance to capital and closest port.
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Table 14: Standard error cluster speci�cation

Market ADM2 ADM1 500 km 250 km 125 km
(1) (2) (3) (4) (5) (6)

price changeprice changeprice changeprice changeprice changeprice change
Stringency Index 0.03 0.04 0.03 0.07 0.07∗ 0.07∗∗

(0.02) (0.02) (0.02) (0.04) (0.03) (0.03)
Stringency Index*Segmented -0.02∗∗∗ -0.02∗∗∗ -0.02∗ -0.02∗∗ -0.02∗∗ -0.02∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
N 50782 41876 50632 50830 50830 50830
Fixed E�ects yes yes yes yes yes yes
Controls yes yes yes yes yes yes
Additional Controls yes yes yes yes yes yes

Note: SE in parentheses. * p<0.05, ** p<0.01. *** p<0.001
Adm refer to administrative level 2 and 3 and km refer to cutt-o� distances in spatial
autoregressive models. Controls include distance to next market, FPPI, (log)ntl, (log)road
density, (log)population, number of missings in market-commodity pair. Additional controls
further include SPI, armed clashes, number of reference markets, (log)distance to capital
and closest port.

Table 15: Heterogeneous e�ects by cereal import dependency, night time lights, and staple
foods

high cereal imp.low cereal imp. high NTL low NTL Staple NoStaple

(1) (2) (3) (4) (5) (6)

price change price change price changeprice changeprice changeprice change

Stringency Index 0.07∗∗∗ 0.04 0.07∗∗∗ 0.00 0.01 0.03

(0.01) (0.05) (0.02) (0.02) (0.02) (0.02)

Stringency Index * Segmented -0.01∗ -0.02∗∗ -0.03∗∗∗ 0.01 -0.03∗∗∗ 0.01

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

N 26513.00 24269.00 27196.00 23475.00 34185.00 16595.00

N Cluster 3758.00 3166.00 3477.00 3433.00 4603.00 2321.00

Fixed E�ects yes yes yes yes yes yes

Controls yes yes yes yes yes yes

Additional Controls yes yes yes yes yes yes

Note: SE in parentheses. * p<0.05, ** p<0.01. *** p<0.001

Controls include distance to next market, FPPI, (log)ntl, (log)road density, (log)population,

number of missings in market-commodity pair. Additional controls further include SPI, armed

clashes, number of reference markets, (log)distance to capital and closest port.
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Expanding on the creation of market integration indices, we can underline the nature of the

four measures derived from Timmer's modi�cation of Ravallion's approach in the context

of this research. In the simpli�ed notation of equation (1) we estimate price variations as

a function of historical prices, immediate and historical variation of reference prices. In

this regression we consider each coe�cient of these three elements as the transmission e�ect

of a characteristic of the market structure. Three measures, segmentation, long-run and

short-run integration, are directly linked with the estimated value of the coe�cients, while

the fourth, Inter-Market Connectdness (IMC) is constructed from long-run and short-run

integration. Our measure for the main analysis, segmentation, assesses if the price value has

no signi�cant correlation with the price of the reference market, having both concurrent and

historical price transmission coe�cients non signi�cantly di�erent from zero, or rejecting the

null hypothesis that β0 = β1 = 0 (see Table 16). In order to test for long-run integration, we

assume that the transmission of changes in the reference market is the primary determinant of

local prices. Therefore the tested hypothesis is that the level of prices in the reference market

is not signi�cantly di�erent from zero. This can be expressed, in the simpli�ed notation, by

testing the null hypothesis that α1 + β0 + β1 = 1. Rejecting the F-test leads to assuming

that reference prices determine local prices irrespectively of the level of the latter. A more

stringent condition, short-term integration, is veri�ed whenever there is perfect transmission

of reference price variations to local market, with no dependency from price levels or, in

other terms, no lagged e�ects on prices in the future. In our simpli�ed notation, this is

tested through the null hypothesis that jointly β0 = 1, β1 = α1 = 0.

IMC, also known as Timmer's index, is the only one of these measures that doesn't

depend on statistical testing but it's rather built on the relationship among coe�cients. It

was constructed to capture the relative magnitude of the contributions of local and reference

market price history to the formation of the current local price level (Heytens, 1986). This is

simply expressed as IMC = α1

β0+β1
. The construction of the four market integration measures
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Table 16: Correlation matrix, market integration measures

(1)

segmented Short-run int. Long-run int. IMC
segmented 1.00

Short-run integration acceptance 0.13∗∗∗ 1.00

Long-run integration acceptance 0.01∗ 0.23∗∗∗ 1.00

IMC 0.01 0.01 -0.01 1.00

Observations 64837

Note: SE in parentheses. * p<0.05, ** p<0.01. *** p<0.001

that we considered, was later expanded to account for the signi�cance of additional lags and

seasonal variables, chosing the regression form with the lowest AIC among equation 1 with

the addition of one or two lags and seasonal dummies. The model is chosen independently

for each market and commodity combination.

In order to compare the di�erent measures we examined main statistics by country and

the correlation among measures. For brevity we reported aggregated results in the table be-

low (see Table 16). We can observe how variables are signi�cantly incorrelated or correlation

is non-signi�cantly greater than zero. This shouldn't surprise us, as all measures are built

on coe�cients obtained from an OLS regression, where orthogonality is a condition imposed

by construction. Yet, structural characteristics of the historical time series allow long and

short-term integration to coexist, as absorption of the impulse coming from the reference

market is unlikely perfect.

In particular for the �rst three measures of integration, it is possible to comment some

interesting �ndings already from the summary statistics, where the average representes the

prevalence of rejection of the null hypothesis of, respectively segmentation (44.4%), short-run
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Table 17: Summary statistics, market integration measures
Market integration indicator N Mean Variance Min Max
Segmentation 9.228 0,446 0,247 0 1
Long-run integration 9.228 0,230 0,177 0 1
Short-run integration 9.228 0,811 0,153 0 1
IMC 9.228 0,224 11822,100 -7150,965 1316,584

integration (78.9%) and long-term integration (23.6%) (see Table 17).

In regards to IMC, we observe a much higher variability. Most markets have a positive

IMC value, which represents an higher incidence of short-term e�ects on price transmission

compared to long-term e�ects. A negative value can occur only if long-term e�ects are

more predominant in the market and there is no historical convergence of prices towards

equilibrium in the observed market. An average value of the IMC of 2.92, while having no

value per-se, gives an indication that prices in our sample could be mostly locally determined.

A last check we're strongly interested in, regarding these measures, is their performance

in the main analysis. Results of the analysis with the four di�erent indicators is reported

below, including all control variables as per the main analysis, and using the same sample

(see Table 18). We �nd results on the e�ects of interaction between the three di�erent test-

based measures are consistent in sign, even if magnitude varies, particularly when observing

the coe�cient of the interaction term of long-run integration, which is also non-signi�cant.

The IMC measure also fails to capture price variability per se, driven by the strong variability

that this indicator is subject to.

The values of the segmentation index, as well as those of the other secondary integration

measures, are still dependent on our de�nition of reference market. The parameters chosen

for de�ning this aggregation are indeed arbitrary and require more discussion and testing.

The parameters under examination are the maximum hours of driving distance for reaching

other markets, and the maximum number of markets in the same country that we want to

aggregate to obtain the reference price. Other elements to keep into account are that: the

market coverage of the original database is coming from a non-probabilistic sampling and is
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Table 18: E�ects of COVID-19 response stringency on price variations, four market integra-
tion measures

(1) (2) (3) (4)
price change price change price change price change

Stringency Index 0.03∗ 0.04∗∗ 0.02 0.02
(0.01) (0.01) (0.01) (0.01)

Stringency Index * Segmentation -0.02∗∗∗

(0.01)

Stringency Index * Short-run integration -0.03∗∗∗

(0.01)

Stringency Index * Long-run integration -0.01
(0.01)

Stringency Index * IMC 0.00
(0.00)

N 50782.00 50782.00 50782.00 50782.00
N Cluster 6924.00 6924.00 6924.00 6924.00
Fixed E�ects yes yes yes yes
Controls yes yes yes yes
Additional Controls yes yes yes yes

Note: SE in parentheses. * p<0.05, ** p<0.01. *** p<0.001
Controls include distance to next market, FPPI, (log)ntl, (log)road density, (log)population,
number of missings in market-commodity pair. Additional controls further include SPI,
armed clashes, number of reference markets, (log)distance to capital and closest port.
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far from exahusting the total number of markets in a country; we need at least one market to

create the reference price; and that we need to limit those cases that have a high concentration

of markets that are satisfying the driving distance condition. Our preferred option was to

use maximum 24 hours, considering that is an a�ordable travel for medium/large traders,

and 10 markets, to avoid (in certain extreme cases, such as Malawi) to use information

from up to 50 markets to construct the reference price. In order to test if those choices

in�uenced our �nal results, we conduct the main analysis again using di�erent parameters

for the estimate of the reference price. The �rst new segmentation test is conducted after we

reduce the driving distance to maximum 6 hours, then estimating again the regression model

presented in section 3.2. The second new segmentation test is conducted after reducing the

maximum number of markets included in the aggregation as reference price to 5. The share

of segemented markets increases if we only consider the closests 5 markets instead of 10

(49.7%) and decreases if we limit distances to 6 instead of 24 hours driving time (35.65%).

Even though limiting markets distances to 6 hours is a too narrow reference market de�nition

in our opinion, overall we �nd the results to be robust to changes in the reference market

de�nition paramters.
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